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On Causal Dynamics Without Metrisation: Part H t 

M I C H A E L  C O L E  

c/o 65 Brushfield Street, London, E. 1 

Abstract 

An interpretation of an ordering relation as an operator is constructed by appeal to the 
notion of homotopy. A metric-free definition of a causal ordering is given, after carefully 
investigating, by means of the notion of ordered sets, what is crucial to the notion of 
causality. A metric-free condition is derived that a causal ordering operator must satisfy, 
and a concrete realisation is found to exist that embodies the paraphernalia of Minkowski 
space with Zeeman's fine topology. Moreover, it is seen that a coordinate space used to 
give a cartography to causally related events must have 'at least' a hyperbolic metric. 

1. Introduction 

1.1. Rdsumd 

The impossibility of  asserting the complete metrisability of  the whole of  
three space, deduced in Part  I o f  this series,$ gives rise to the question o f  
how one may define causality in the large. The real problem is of  how to 
do so without  using any form of  metric notion. 

A means of  solving this problem is presented that  uses the not ion of  
ordering operators,  a not ion derived f rom that  of  an ordering relation. 
But this itself is not  sufficient, for a more  fundamental  study is needed to 
investigate the basis of  the not ion of  causality. This is achieved by intro- 
ducing the 'Principle of  Corporate  Agreement ' ,  which proposes an explicit 
means of  objectivising the content of  observations. The main use of  this 
principle will be in Part  I I I  of  this series (this volume, pp. 23-40), but  here 
its application allows one to define a causal ordering as a total ordering of  
events which are experienced in c o m m o n  by a set of  observers. 

F r o m  a condition (derived in Section 2) that  total ordering operators 
must  satisfy, Section 4 shows that there exists a concrete realisation of  a 
total ordering operator  that  demands use of  Zeeman's  fine topology for 
Minkowski  space. It  is seen, furthermore, that  the disconnection, inherent 
in the fine topology 's  neighbourhoods,  is essential to any realisation o f  an 
ordering operator  satisfying the metric-free causality condition. 

t This work was undertaken and completed whilst the author was at the Post Office 
Research Station, Dollis Hill, London, N.W.2. 

$ On Causal Dynamics Without Metrisation: Part I. InternationalJournalofTheoretieal 
Physics, Vol. 1, No. 1,115-151 (1968). 
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1.2. Prospect 
The interpretation of an ordering relation as an ordering operator is 

rather intuitive, and can bear a good deal of  rigorisation. The next paper 
in this series is devoted to that task, and by virtue of  the more careful 
expression of a non-metric notion of causality in terms of ordering relations 
and ordering operators, there is deduced that systems of causal dynamical 
transitions between events must have a 'quotient structure'. 

2. Ordering Relations 
2.1. Ordering Axioms 

Before discussion of the ideas behind causality, it will be necessary to 
recall elementary notions about ordering relations. The notion of ordering 
is familiar to everyone through the two verbs ' to succeed' and ' to precede'. 
When one has a large collection of objects in a geometrical pattern it is 
rather more difficult to give a precise meaning to these terms by means of 
mere words. Rather one refers to a set of axioms which provide a firm 
starting point. The reflexive and transitive axioms define a pre-ordering, 
the addition of the anti-symmetric axiom defines a partial (or strict) 
ordering, and the transitive axiom together with the total axiom define a 
total ordering. An equivalence relation is a variant of  a strict ordering, in 
which the anti-symmetric axiom is replaced by the symmetric axiom. 
(For clarification on this point, the reader should refer to Section 4.3.) 
The following definition and theorem, which are very well known, will be 
of great use to us in the discussions of this and the following paper of the 
series: 

DF(1): Let ~ = {C~} be a partition of a set A, then if aa~, a,i  ~ C~ for any i, 
the relation written A/T such that aaiA/~a m is called the equivalence 
relation induced by the partition ~. 

TH(1): The transition c~ ~ A/~ is the exact reverse of the transition 
R -~- A/R. ] Halmos (1958), Section 7, p. 28 

This reciprocity relation expresses the connection between equivalence 
relations and partitions. 

2.2. Bounds of Ordered Sets 
It  is possible to separate sets into subsets together with certain elements 

so that the single elements play a distinctive role in giving an ordering to the 
sequences of  subsets of  the complete sets. For example, consider Fig. 1, in 
which are shown four sets Up, Uq, Ur, Us each containing totally ordered 
paths (sets of  elements), with three points common to all of the paths. 
Let each of the four sets Up . . . . .  Us be ordered by a common pre-ordering <, 
so that for all up ~ Up . . . . .  us ~ Us, there holds up < uq < ur < us. Then it is 
possible to define an ordering relation o< for the set Z in such a manner 
that it is a total order, even if the intermediate sets are no more than pre- 
ordered. The ordering relation so defined then stays total under the restric- 
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Ors 

~" Up<Uq<Ur<U~ z m o<zqr o<z~ 

i.e. up<uq<ur<Us forall upeUp, uoCUa, urEUr, usEUa. 

Figure 1. 

tion of  the ordering of  the u, e {U,} to partial or total. I t  is clear that  each 
element of  Z can be described simultaneously as the immediate predecessor 
o f  one of  the Up,..., Us and as the immediate successor of  another ;  in fact 
the terms sup and inf may be applied. The ordering relation o< is defined 
as follows: 

DF(2) :  Given a collection of  sets ~ '  = {Ui} together with a pre-ordering < 
between the elements of  Ui  Ui such that  not only Ui < U~ for i < J r  
but also u~(~)< u~(~) for all u~(~), u~(~)~ Ui, and such that supUp = 
zpq = inf Uq, then the set Z of  all elements zpq is ordered by the relation 
o< in such a manner  that if zpo o< zq~ o< z,~, then: 

sup Up = zpq = inf Uq 

sup Uq = zq~ = inf U~ 

sup U~ = z,~ = inf U~ 

T H ( 2 ) :  The ordered set (Z, o<) is a totally ordered set. 

The p roof  of  this theorem, al though somewhat lengthy if written in 
detail, is almost apparent  f rom the definitions of  sup and inf. 1 

2.3. Pre-order Commuta t ion  Relat ions 

In  this and subsequent sub-sections, ordering relations are used as 
operators in a way which mathematicians would not  consider to be 
absolutely respectable. However,  for the sake of  the physical notions which 
will be introduced later, we shall disregard such objections, believing that 
they may be overcome. 

I f  W is a set with a pre-ordering relation R and x, y ~ W are ordered by 
R - - t h a t  is to say we may write x R y - - t h e n  since the strict axiom does not  
apply it is possible to write both x R y  and y R x  without  requiring x and y 
to be identical. 

t See Fig. 1 ; i.e. u~ < u~ < u~ < u~ for all up ~ Up, uq ~ Uq, u, c U~, u~ c Us. 
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Now since 

xRy,  then by inversion of the ordering relation, yR-1 x (2.3.1) 

also it is true that, 

yRx ,  so by inversion of the ordering relation, x R - a y  (2.3.2) 

Using R and R -I as right operators--in the sense that if aR+~b, then 
b = (a) R +-l-equation (2.3.1) implies: 

x R R  -1 x (2.3.3) 

whilst equation (2.3.5) implies: 

x R  -I R x  (2.3.4) 

Therefore, in some sense we may say that RR -~ = R -~ R, or in the more 
compact notation of commutator brackets we may state: 

PR((1)): If  R is a pre-ordering (in a set), then JR, R -1] = 0. ] 

RMK(1):  The sense of equality is justifiable on these grounds: that the 
pre-ordering axioms do not differentiate between the two starting relations 
x R y  and yRx-- therefore  equations (2.3.3) and (2.3.4) would both have 
been obtained regardless of the (dummy) symbol x. And since no form of 
differentiation could be made in this respect--which is actually the respect 
of assigning a direction to R--one  may write an equality relation. 

Let us note that R and its 'powers' do not combine 'multiplicatively' 
according to the usual law of addition of exponents. For  instance, com- 
bining the property of reflexivity, xRx ,  with equations (2.3.3) and (2.3.4) 
might lead us to conclude from R = RR -1 = R -1R that R = R -1 = / ,  that 
is to say R is no more than the trivial identity relation--a result clearly not 
necessarily true. Moreover, from the transitivity condition applied to xRy  
and y R z  we obtain xRz;  inverting we have both zR-XR-~x  and zR-~x.  
Generalising this, we obtain the unusual properties: 

R m = R; R = R -~ g I; R-" = R -1 (2.3.5) 

Here the sense of the equality relation may be interpreted, 'Does a task 
similar to', for we have considered R and R -~ as operators taking one 
element of a set into another. 

RMK(2):  Notice that the inequality in equation (2.3.5) expressed by 
R = R= ~ ~ I is 'almost' an equality (especially in the sense described), in 
the sense that a pre-ordering relation provides no means of testing for 
the identity of elements related by it. In contrast to this, the symmetric 
axiom of a strict ordering does provide such a means. 

Equation (2.3.5) allows us to generalise PR((1)) to the following state- 
ment: 
PR(1): If  a set is pre-ordered by a relation R, then considering R as an 

operator associating pairs of elements, it satisfies the condition 
[R m, R -n] = O. "l 
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Some reason becomes apparent in the composition behaviour of R if it is 
considered as a non-trivial group of elements. We shall use this interpreta- 
tion later on. 

2.4. Partial Order Commutation Relations 

The commutation relation of PR(1) may be shown to hold for strict 
orders also, but the proof needs modification because equations (2.3.1) 
and (2.3.2) cannot both be written, in view of the symmetric axiom. Instead 
set xRy, with the inverse relation yR -~ x, and then choose an element w 
such that wRx, with inverse relationship xR -~ w. So we may combine these 
relationships together in the same way as in the previous section and state: 

PR(2): If a set is (strictly) partially ordered by a relation R, then considering 
R as an operator associating pairs of elements, it satisfies the condition 
[R", R-"I = 0. ] 

The composition laws for a partial ordering are essentially those of 
equation (2.3.5) except that the inequality must be slightly modified. For 
when two elements of the ordered set satisfy the strict axiom (that xRy and 
yRx together imply x = y), we have: 

xRy r yR-~ x, yRx 4~ xt~-~ y 
whence: 

R = R  -1 = I  

here the symbol ~ means that each side uniquely implies--and is identical 
to- - the  other. Therefore in the case of general pairs of elements partially 
ordered, we may write 

R " = R ;  R-"=R-1; I ~ R ~ R - 1 4 o l  (2.4.1) 

NTN(1): The symbol o+ means that the inequality holds in general, except 

where the ordering relation (operator) carries an element into itself or 
into another which may be described as 'equal'. 

2.5. Total Order Commutation Relations 

The total axiom demands that certainly xRy be true, or else that yRx be 
true, but not both. First suppose that xRy be true. Then yR-lx ,  and 
consequently xRR-ax. Secondly, if we were to suppose that yRx were also 
true, then we would have xR- 1Rx by employing the supposedly true inverse 
relation xR-ay and using y = ( x ) R - L  Consequently we could write 
RR -1 = R -~ R. But our second assumption is false, therefore we must have 
[R, R -1] 4= 0. By using the transitivity axiom we may generalise the result 
as before, to refer to positive and negative exponents of R: 

PR(3): If a set is totally ordered by a relation R, then considering R as an 
operator associating pairs of elements, it satisfies the condition 
[R',  R-"] ~: 0. l 
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3. The Principle of Corporate Agreement 
3.1. First Considerations 

The study called 'Physics' is a corporate activity, demanding the use and 
acceptance of some common form of observational activity together with 
an inferential-interpretative language by a collection of people who may 
be called observers. Let us begin with considering a single observer and 
look for some characteristics of his experience of the world about him. 

One may say, with a commonsense meaning, that a person experiences a 
set of events during any given period of time. That is to say a person may 
acknowledge that in the given interval he did certain things, saw, heard or 
otherwise sensed certain things (including what may have been done to 
him by other people), and thought about or thought of certain things. All 
these apprisable experiences we shall briefly call 'events'. It is quite clear 
that in a commonsense way one may speak of an observation of a physical 
system, carried out by a person, as an event in the person's experience of 
the world about h im--for  his action of observation requires determinedt 
actions, perceptions and thoughts, and these are qualities customarily 
ascribed to the description of the experiencing of an event. 

Suppose that an observer experiences a set of events E. Then if he has 
any more detail in his memory other than the nature of the different events, 
he will be able to ascribe some sequential order to the elements of E. Of 
certain pairs of elements he will be able to say that this one immediately 
succeeded that one; it is not certain that his memory, or perhaps his sense 
of distinguishing between events, will be sufficiently appropriately developed 
to allow him to assign an immediate predecessor or successor to every 
single event. More generally, it is clear that he will be able to establish some 
semblence of a 'before-after'  relationship between elements or between 
subsets of E if and only if it is possible to find at least one element of E 
which, with respect to the 'before-after '  ordering relation, possesses either 
a strict initial segment or strict 'subsequent' segment.'~ In day-to-day life 
one does in fact find that there are collections of events which cannot be 
precisely ordered amongst themselves in the memory, but nevertheless it is 
possible to say that the particular subset of events succeeded one particular 
event and preceded another :�82 hence the caution of the previous sentence. 

t 'Determined' is not used here in any mathematical sense, but in the sense that the 
'ego-self' of the observer must decide to involve itself with the actions necessary, on its 
part, for the observation to be undertaken. (For an excellent discussion of the relationship 
between man's apprehension of his circumstances and his awareness of his action of 
apprehension, the reader is referred to Karl Helm's work, Christian Faith and Natural 
Science, SCM Press, London, 1953. In particular, the chapter entitled 'The Ego and 
The World' is relevant to the study here, especially the first and second existential 
propositions.) 

;~ Compare with the notion of the strict initial segment with respect to an element in 
an ordered set. We may call, in an obvious way, the set {x ~ X: x > a} the strict subsequent 
segment determined by a. 

�82 And later on, just so do I propose that there may be sets of events in the real physical 
world we perceive, which may not be able to be totally ordered by our present notions of 
space and time. 
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Let us now introduce a second observer who experiences a set of events 
E ' ;  furthermore, let us suppose that they can communicate with one 
another in a mutually intelligible way. It is then possible that under 
favourable circumstances the observers will agree that each has observed 
a number of events which the other has observed. (Notice that in the 
everyday interpretation of this last sentence there would have been excludeO, 
tacitly, almost any identification of thoughts as events--so accustomed are 
we to being aware of what occurs outside ourselves.) Immediately there 
arises the question of whether each observer puts the common events into 
the same (perhaps totally) ordered sequence as the other, t 

I f  two observers cannot agree upon an ordering of the events common to 
their observation, there arises the situation in which one observer may say 
event ea preceded event e~, whilst the other says that e~ succeeded e~. But 
there are, of course, certain conditions which must be satisfied before such 
statements can be meaningfully made, and these will be examined in the 
following subsections. We shall arrive at the most fundamental question 
which can be asked about the problem of causali ty--and it will be shown 
why it is so fundamental by the discussions in the ensuing text--namely this: 

Q u(1): Given a set of observers, each one of which records a set of  events 
and ascribes at least a strict ordering to it, then if there is a totally 
ordered non-vanishing intersection of all such sets of events, is it 
possible to extend that total ordering to a total ordering of the union 
of all sets of observed events ? 

3.2. Direction Comparisons 

Consider two observers C1, (92, who record sets of e v e n t s  E r E ~2), 
respectively. Let us denote subsets of E ~), E ~2) by EL l), E~ 2), and elements 

(1) ~(2) respectively; elements of E ~), E ~z) will have of  these subsets by ea,), ~u) ,  
the Greek subscript omitted if they refer to no particular subset. Suppose 
also that E ~l) f3 E r = Er + ;~, so that (91 and (~2 both observe the set of  
events Er. I f  either observer is to be able to state that a particular event 
which he observes is the cause (or a possible cause) of another particular 
event which he observes, then it must be possible for him unambiguously 
to distinguish each of the two events by means of an ordering relation, in 
the sense : in the domain of the relation it is possible to separate the set of 
events into two disjoint subsets, one containing the first mentioned event 
and the other containing the second event. A pre-ordering does not allow 
any such unambiguous distinction; a partial ordering generates equivalence 
classes,~ members of  any one class being indistinguishable from one another 
(i.e. equivalent) as far as the ordering relation is concerned; a total ordering 
completely separates the ordered elements into a sequence isomorphic to a 
naturally ordered subset of  the integers. Therefore, in order for an observer 

I- For example, husband-wife disputations over who did what, first ! ! 
:~ A partial ordering is not an equivalence relation, but see Section 4.3 for a proper 

discussion of the way in which equivalence classes may be generated and compounded 
by a partial ordering. 
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to be able to associate a well-defined cause-effect relationship with a set 
of  events, he must  be able to introduce a total order into the set. I f  each 
observer 's cause-effect relationship between certain elements o f  E r  is to 
have a c o m m o n  meaning, further conditions must  be satisfied. 

Let ~(i) be i n f e r  for  E (~ i = 1, 2: (this notat ion is introduced in case ~ F [ I ]  
each observer considers a different element of  EF to be the infimum with 

�9 ~(i) c Er respect to his ordering). To each E (" there will be a subset ~ r t r ] -  
which is totally ordered by a relation R~}rr Let e(~ be supEr for E (~ F[~a 
Then there will stand the relations ,,(" p(o  o(,  i = 1, 2, but  these two ~ F [ I ]  ~ ' F [ T ]  ~F[S] ,  

relations only establish a relation between the directions of  o(1, and ~~F[T] 
o(1) ,,(,, and o(2) o(2)  consist o f  the o(2) if the two pairs of  elements ~ rm,  ~rts~ "-rm, ~rts~ ~'~F[T] 

same two elements. In  the completely general case, there is no reason to 
�9 ( i )  (2) 0(2) suppose that  this may be so. However,  if e r m  = ecru  (hence "(~) = ~F[S] ~F[S], 

because of the total ordering) we can say that o(1) defines the same ~F[T] 
o(2, . in the other casewhen e}!~, 1 o(2, (hence e~s~ 0(2) direction as ~.rtr~, = "r[s] = ~r[llJ 

we say that  the directions (~) of  the RrET1 are opposite. The general case is now 
seen to require a more  detailed treatment;  we must  search for the first pair 
o f  elements of  Ertr~ that  are ordered in the same direction and such that  
both  elements are predecessors ofe}~sl  and ~rts~"(2) in E~)rl  and Ec(~)r I respec- 
tively. This means that  there must  exist at least three elements o f  
E ]c?(1) [-) ~(2) say "(s) rtTl = ~rtTJ ~rtT~, ~rtTl, J =  l, 2, 3, satisfying ~(~) ou)  ,(s) wF[I]  ~t ~ r [  T] o F [  T], 

e(S) o(*) -.(s+~) and o(s) o . ,  . (o i = 1, 2. These elements are needed F [ T I  a~F[T] C F [ T ]  c r [ T ]  ~t ~ 'r[  T] t~F[S], 

so that  the transitivity axiom may be used on each "u) T. to establish a / X r [  j 
direction 'a long '  the whole sets E~E)r~. Only then can the direction o f  an 
arbitrary ordered pair ~(~) (o o(~) o(l ) (s+,~) be compared with the direction ~ F [ T ]  ~ ' F [ T ] ~ [ ' [ T ]  

of  another  arbitrary pair  ~(2)(k)O(2) o(~)(k+.) and the result tested for c r [ T ]  - t~F[T]r 'F[T]  , 

consistency with the relation between the directions given by the three test 
events. There is clearly the possibility that  certain pairs of  events will give 
inconsistent comparisons,  in which case (9, and (9 2 will be unable to assign 
a c o m m o n  total order to E (~) f~ (2) _ E  ctr~ E r m -  rtr~. Therefore if there is to be 
any cause-effect relationship which has the same meaning to (_9, and d~2 

K'(T max) c- together, it can only be amongst  the set ~ r m  - Ertr~ consisting of  the 
maximum number  o f  elements which are totally ordered into the same 
sequence by both  l)(l) and o(2) ~*F[T] ~"F[T]" 

3.3. Causality f o r  Several Observers 

The extension of  the considerations o f  the previous subsection make it 
clear that  if a set o f  observers D = {(;,}, i ~ I ~  J~+) each individually 
observe sets of  events E ( ' ,  then a c o m m o n  cause-effect relationship will 
be defined if in E r  = ~ E (i) there lie sets of  events E~)r~ totally ordered 

a maxunal  subset Er~r~ ~ E~'r~ for each observer, and it is possible to find " (r max) " 

for  all i ~ I that  is given the same total ordering R~"~ ) (up to a reversal) by 
every R~}r~. It  is by this means that  a definition o f  the not ion o f  a causal 
ordering of  events will be given in Section 3.6, DF(3). But we shall enter 
into some more careful considerations of  the validity o f  this approach first 
of  all. 
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3.4. Zorn's Lemma 

It is necessary to examine the existence of solutions to the problem (of 
determining a total order of a certain set) that has been posed. For  if, as 
in the previous subsection, there are a large number of sets E "), the union 
E = t.), E (o will contain a large number of subsets which are pre-ordered, 
partially ordered and totally ordered by many independent ordering 
relations. It is not at all clear, at first sight, that it may be possible to define 
a means of establishing any kind of total ordering relation for the whole set. 

First consider individual sets E (1). Each observer C~ will be able to separate 
the events into subsets which will consist of collections ofpre-ordered events 
(denoted by E~e)~a) with A ~ A c I) and strictly ordered events (denoted by 
E" ) .  with c M c I and  A N M = ~). Furthermore it is possible to choose S(Io  l 3` 

the r - . )  ~PO~ so that each whole set may be totally ordered~ with respect to 
another and with respect to the Es(~)u). This type of ordering may be compared 
pictorially with a string of sausages in which the necks between the sausages 
may have various numbers of knots; the sets of points in the sausages 
represent the E(~a)' and the sets of knots in the necks represent the E}(~).") 
It is perhaps more elegant to call a totally ordered set a chain rather than 
continually refer to sausages and knotted necks; so we may remark that 
the E ") may be formed into chains; let us denote the chain forms of E ") 
by qqE")]. Now divide each ~ [E  ")] into subsets which are also chains, 
in which each element is either an immediate predecessor or an immediate 
successor of another element, or both; furthermore require that the initial 
and final elements be drawn from some E(s~a)--1 must be different for each 
of these two points if these subsets contain an E(~a) as an element--and 
denote the subsets as c~s[E(~)]. It is not necessary to require that 
c~[E")] N c~s.[E")] = ;~. Then every ~ [ E  (~ has well-defined upper and 
lower bounds. Consequently the conditions of Zorn's Lemma are satisfied:l: 
- -where in fact only an upper bound for every chain is required--and we 
are assured of the existence of a maximal element of U~,~ ~ [  E")] = 
c~'[ E] ~ c~[ E] - Ui C~[E(~ Notice that from the way the c~[E")] have 
been defined, the difference ~[E]  - 5 ' [E]  will always be an integral number 
of sausages (possibly zero); that is to say C~[E]- c~'[E] = UZsA' r(~) ~ p ( ~ ) ,  

A' ~ A. The maximal element may belong to ~[E]  - c~'[E]. 
Let us now apply this argument iteratively. Denote by ~(X)[E] the 

smallest subset of ~[E]  such that there exist a maximal element e~ of the 
set ~(l) '[E] in Ui U~,~ (E~a) U (i) El(,)). Then let c6~(2)[E] be the next largest 
subset of ~[E]  such that there exist a maximal element e2 of the set 
~(2)'[E] ~ cs with ez # e l .  Then e2 is necessarily an immediate 
successor of e~ with respect to this ordering (defined by application of 
Zorn's Lemma). Let {e~,} be the set of all such maximal points. Then if we 

t Since we are here dealing with discrete sets of  events, we may consider a strict order  
to define a total order in an unambiguous way; the equality may be dropped f rom the 
strict ordering because of  the discreteness of  the events, 

:~ In fact slightly more  so, because we may assume ~ [ E  ")] to be totally ordered, whilst 
Zorn's Lemma requires no more than strict ordering. 
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take J - [E]  = {e~) - ((e~) N (U~,~ E~(a))), the set Y [ E ]  is a set of distin- 
guished events totally ordered by every observer into the same sequence. 

3.5. Well Ordering 

The Well Ordering Theorem (Halmos, 1958) states that every set can be 
well ordered. That is to say in this case E can be partially ordered t and 
every non-empty subset of E can be assigned a smallest element. However, 
there is in fact no guarantee that the resulting well order will have any 
similarity--in the appropriate domains-- to any of the orderings associated 
with the observers r This theorem is therefore of little use to our problem, 
for we need to express any general total ordering of events in a way that is 
assured of the corporate agreement of the set of observers. 

3.6. Principle of Corporate Agreement 
Although in the last two subsections it has been shown that there is a 

formal mathematical basis for assuming that under certain circumstances 
a collection of observers may be able to establish a common causal ordering 
amongst some events, no useful construction has been given. In this 
subsection a certain structure is proposed and it is shown to give rise to an 
intuitively comprehensible diagrammatic technique that may be used for 
discussing problems of causal ordering; all of this is dependent upon a 
principle which I shall call the Principle of Corporate Agreement. A brief 
explanation of its basis is now given. 

In attempting to be an objective study, physics endeavours to discuss its 
subject matter in a way which is as independent as possible from the 
subjective interpretations of individual participants in the study (whom 
we shall call 'physicists'). It is the purpose of this present paper to indicate 
a mathematical formalism which expresses this intent; it is not the case 
that the expression is tacit within the formalism, but rather that the formal- 
ism provides a direct statement of the intent. To achieve the maximum 
reduction in subjectivity, each 'physicist's' experiences must be reproducible 
within all other 'physicists' : and this tacitly requires that: 

ASSN(IO): (Principle of Corporate Agreement): There exists a theory 
language~ which 
CDN(1): All 'physicists' use to describe and inter-relate their experi- 

ences; 
CDN(2): Each 'physicist' believes all the other 'physicists ~ interpret 

and use in exactly the same way as he does. 

Notice that this principle cannot be entirely objective because it depends 
upon the subjective act of agreement. However, it does reduce the introduc- 

t Since the human action of observation is one that generates discrete observations, 
the set E may be considered discrete, and hence be considered as totally ordered. 

:~ Here one may omit the adjective 'theory'. The notion of 'theory language' is intro- 
duced in the discussions of Part III of this series. For the sake of simplicity we shall 
merely remark that it refers to a collection of symbols that have the same (mathematically) 
well-defined usage and grammar. 
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tion of subjectivity to the level that is both inexpressible by the language 
and not recognised, nor accounted for, by all 'physicists', in the same 
way. 

For the diagrammatic construction we refer back to Fig. 1, and for the 
associated ordering relations to DF(2), TH(2), at the end of Section 2.2. 
It is clear that the individual lines in Fig. 1 may be identified as the sets of 
observations (ordered into at least a partial sequence) corresponding to 
individual observers. The elements of the set Z are exactly the events upon 
which all observers can both agree in description~ and agree as to total 
ordering. The latter agreement is assured by the sup and inf conditions in 
DF(2) as well as TH(2). We may presume that the observers (i.e. 'physicists') 
are able to set up a total ordering relation for the set Z by means of their 
common language. The problem then arises of whether that total ordering 
can be extended to include all the intermediate events between the elements 
of Z:  i.e. if a well ordering for one intermediate set can be found, can it be 
extended to all the others in a consistent way ? This particular problem will 
be completely avoided (see Section 3, Part III),  by taking as of physical 
interest only those transitions between events upon which all observers 
can agree. That  requirement will be expressed by, as it were, dividing out 
all the intermediate transitions upon which there is some disagreement. 
Furthermore, the quotient operation will be taken as a requirement of the 
Principle of  Corporate Agreement. 

The diagrams may be given a stricter interpretation than the rather 
conversational one which has so far been used by replacing events with 
neighbourhoods of parameter spaces of measurement values, and by 
replacing the connecting lines between such events by dynamical mappings. 
Then via inverses of measurement processes, the diagrams correspond 
to sets of physical conditions and dynamical processes. Consequently the 
separation of sets of intermediate events into classes, defined by an inter- 
mediate event being common to some (but not all) sets of observations, 
suggests that one might expect to find dynamical processes between certain 
pairs of physical conditions also separated into classes. The 'algebraic'-set- 
theoretic substantiation of this is the object of Part III ,  in which this 
paper 's  notions will be taken up once more. However, we may finally give 
a definition of a causal ordering in accordance with the Principle of Cor- 
porate Agreement: 

DF(3): A set of events is said to be causally ordered with respect to a set of  
observers, if each observer can assign a total order to the set that 
orders the set into a totally ordered sequence coinciding with a total 
ordering assigned by each of the other observers. All such total 
orderings are said to induce a common causal ordering of the set of 
events. 

"~- In ease the reader is not too sure whether 'agreement of description' has any real 
meaning, he may be referred to Section 2.3, DF(I), in Part IH of this series, where the 
notion of 'language equivalence' is introduced in order to consider such criteria. 
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4. The Representation of a Causal Ordering 

4.1. Homotopy Considerations 
Let us start by considering pre-orderings. An example of a pre-ordered 

set is a metrisable space; for if a point x stands in the metric relationship 
with another point y,? writing this xRy, then if also there holds yRz for 
the points y, z, then xRz is true also, thus satisfying the transitivity con- 
dition. However, one  may also write zRy and yRx, hence zRx, without 
having the points x, y, z identical. This general relationship covers every 
conceivable metric separation between two points, therefore in the connec- 
ted components of the metrisable space one may think of the metric 
relation as being 'stretched' in accordance with the metric separation. 
Such a notion of stretching is very much like that of homotopic deformation 
of a space or mapping. 

A more complicated relation, on an appropriately topologised set, that 
is still a pre-ordering, is the (semi-definite) Euclidean metric. It is much more 
apparent that this relation has homotopy-like properties, in so far as its 
form for mapping two close-lying points into a number may be smoothly 
deformed to map two widely separated points onto another number. Now 
although these properties are not strictly homotopy properties, we may 
see that there is a very close correspondence with the approach developed 
in the last two sections. The ordering relation operators take one element 
of a set into another, so if we consider the simple example of a straight line 
ordered by the Euclidean metric, then any point on the line can be mapped 
into another in the following way: 
EX(1): Let X be the real line and denote the Euclidean metric by 

5t~(xi, xs. ) = +~/[(xi - xj) 21 = s~j for xi, xj ~ X 

Notice that the squaring operation leads to a possible identification of two 
points; but this may be avoided by the use of a step function. Then if xi 
is a fixed point and sij is a real number, there exists a point xj at distance 
s~j from x~. We may write this in an operator notation as xj = 5P[x~ ; s j ,  
and more explicitly as: 

= f dx(x - xi) x 3(l(x; xi)) cJ(_-)[x~; s~j] x j(+) 

where l(x;x~)= ( x -  xi) 2 -  sZij~k(• xi)) and where the subscript (• 
refers to the cases (x~ - x j) ~ 0, respectively. 

The integral expression is quite clearly a one parameter homotopy of 
mappings, with parameter sij. 

One may laboriously extend the example above to give analytic expres- 
sions for homotopies of mappings for other spaces more complicated than 
the real line. The general process may, however, be described quite simply. 

t Here we do no t  specify that  any  number s  are involved, merely tha t  xRy means  y is 
metrically related to x. Hence  the  symmetr ic  ax iom does not  hold,  because xRy and  yRx  
are bo th  true wi thout  implying x = y. 
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From each point of a space draw a path to another point, in such a way 
that no point is inaccessible from at least one other point of the space. 
Then the collection of such paths map the space onto itself, and there are 
as many different mappings of such a nature as there are possible assigna- 
tions of paths between all pairs of points. If, as is true in a metric space, 
the lengths of the paths are continuously variable,I" then the collection of 
endomorphisms (of the space) we have described can be arranged into a 
homotopy of endomorphisms. One can directly consider this homotopy of 
endomorphisms to be an ordering operator, which (by choice of the correct 
parameters) can map any one point of the space into any other by any path 
consistent with the structure+ + of the space. Henceforward, it will be assumed 
that an ordering operator may relate any two points of a space in a manner 
consistent with both the structure of the space and the stringency of the 
ordering (pre-, strict or total). 

4.2. Homotopy of Pre-ordering Commutators 
The equations we have to interpret are PRO) and equation (2.3.5) of 

Section 2.3. Taking the simplified form of the commutator, as expressed 
by [R,R-1]=RR -1 - R - m R = 0 ,  we may interpret the term RR -~ as a 
double operation upon a set of elements that maps an element a on the 
left into another (intermediate) one c related to it by the ordering relation R 
and then transforms it into an element b which also stands in the relation R 
to the aforementioned intermediate element c. Thus one obtains all possible 
maps (denoted by RR -1) between ordered pairs of elements (a, b) such that 
both elements stand in the relation R to an element c. These maps may be 
identified with paths (a -+ b, b -+ c) with an arrowhead.�82 The term R-1R 
likewise gives rise to a set of arrowhead paths, but with an opposite sense 
corresponding to the difference in the order of the R and R -1 operators. 
The commutator relation states that the two sets of maps are indistin- 
guishable; in the sense of the preceding subsection, the two sets are 
(homotopicallyw deformable into one another and possess no (homotopyw 
classes which cannot be deformed one into the other (because of the 
weakness of the pre-ordering axioms). We may therefore say that: 

PR(4): The set of ordering operators associated with a pre-ordering of a 
set is simply connected. 

This is doubly evident when one inspects the proof of PR(1), for there the 
arrowhead maps an element into itself, that is to say they correspond to 
loops. And if loops on a space are all deformable one into another the 
space is then called simply connected. ] The commutator relation also 

t To say the space is locally arcwise connected would be more succinct. 
:~ Structure for spaces has not yet been defined, but the reader is left to his intuition 

for the moment. If he thinks about paths and holes he will have the right kind of ideas. 
�82 That is to say the directed paths a -+ c and b -+ e may be drawn as an arrowhead 

with c as the tip. 
w Using this term firstly in a figurative sense, and secondly because in mathematics we 

consider smooth deformations to have the form of a homotopy transformation. 
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implies that an unambiguous direction cannot be assigned to the 'loop' 
maps. 

4.3. Equivalence Classes and Partial Orderings 

An equivalence relation R in a set satisfies the pre-ordering axioms, but 
has the symmetric axiom, namely xRy ~ yRx,  whereas a partial ordering 
P has the anti-symmetric axiom, namely xPy and yPx ~ x = y. We may 
consider, in a way to be described, that a partial ordering induces a form 
of 'equivalence' relation with a P-like ordering between the resulting 
'equivalence' classes. Regard the partial ordering P as a means of distin- 
guishing between elements of the set it orders, then those elements which 
cannot be distinguished from one particular element by P will be said to 
be P-wise indistinguishable from the specified element. However, we must 
notice that the indistinguishability classes--as we shall name the 'equivalence' 
classes induced by P- -a re  not necessarily true equivalence classes, for no 
non-trivial transitivity within the classes is necessarily defined, and it is 
certainly impossible for the P-transitivity to hold non-trivially. 

An example of well-defined indistinguishability classes which give rise 
to a partition, is the set of lines y = constant in the two-dimensional cartesian 
plane, with the partial order (x, yO <~ (x ' ,y2) IFOF yl < Y2. An example of  
a set of indistinguishability classes which do not give rise to a partition is 
the set of light cones associated with the points along a time-like path in 
Minkowski space; here the partial ordering between two points x,y  is 
given by 

(y0  - x0 )  2 ~> ( y l  - x l )  2 + (y2  - x 2 )  2 + (y3  - x3 )  2 

4.4. Homotopy of Partial Ordering Commutators 

Interpreting a partial ordering R as a collection of ordering operators 
as in Section 4.2 is clearly possible, but the collection of all the operators 
will have a different structure. Let us give a simple examination of the case 
where the associated indistinguishability classes are well defined. Then we 
may show, as below, that the ordering operators between pairs of 
elements in a single equivalence class clearly are all deformable one into 
the other owing to the symmetric condition on the ordering relation in the 
class. This, then, means that there are homotopy classes of ordering 
operators corresponding to the R-wise (indistinguishability) equivalence 
classes. However, there are also ordering operators taking an element of 
one class into an element of another class, and since they relate distinct 
classes they (the operators) must be distinct from one another. If one 
considers these ordering operators as maps between classes, then they have 
no internal structure because they are maps between single elements; but 
if they are considered as being quantities which characterise all possible 
maps between pairs of elements from two equivalence classes, then they 
can be seen to have the structure of homotopy classes. For let, X, Y be two 

X Y  X Y  �9 equivalence classes, xl, x2 ~ X and y~, Y2 @ Y with x I R(11)Y~ and x 2 Rt22)Y2, 
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also let Rx,j),(~ R(r~ denote the ordering operators in R-wise indistinguish- 
ability classes--they are homotopy classes of operators as was remarked 
earlier. Then we may write: 

xr  ~(o) . R~lrl) ~(o) ., x r  ~ . x r  ~,(o) XI R(ll)Yl, y l  ~t.Y(12)Y 2 ~ Xl  z:~ ~t'Y(12).Y2 R(ll) - -  l'~(11) ~t,.g(12) 

where the symbol _ denotes the homotopy relationship. But we also 
h a v e  x I Rf~z)y2, and since we do not assume xv that R , j )  maps Xonto Yvia any 
intermediate equivalence classes we must assumet that R ~ )  = ~,(Dxrl ~ ) l,v(D(~ 2) -~" 
Rfl~). Similarly we may deduce that xv ~ xr  R(12)- R(22) by making use of the 
operators m0) xY RXY ~"X(12), R(22). Hence, R~:l) ~-- x r  R(22), and we may consider as 
symbolising either the homotopy class of ordering operators xr R , j )  between 
xi E X and yj ~ Y, or as the ordering operator between the class Y of 
R-wise indistinguishable elements. Clearly these two notions may be freely 
interchanged. We may therefore consider the partial ordering operator, 
associated with the partial ordering R, of a set, as the collection of all 
possible products of ordering operators such as R(x ~ and R xY. The inverse 
partial ordering operator R -~ will consist of all possible products of 
ordering operators R~x ~ and (RXY)-I;  there can be no inverse defined for 
R(x ~ because the equivalence class X contains elements which cannot be 
separated into a sequence that is ordered by the sense of (i.e. direction 
associated with) R. 

The products R R  -x and R - 1 R ,  consequently, represent all possible 
products of an R xr  operation followed by an (RZV) -l  operation, and vice 
versa, to within some R(x ~ R(r ~ R(z ~ operations. Thus R R  - l  would consist 
of all possible operator products ~-xm~176176 ~'r ~-- j The com- 
mutator relation states that the loop products R R  -~ and R - ~ R  may be 
deformed into each other. 

4.5. Homotopy  o f  Total  Order Commutators  

A total ordering R in a set separates the set into discrete elements, that is 
to say every point is R-wise distinguishable from another, or if it is the 
maximal element it is R-l-wise distinguishable from every other. (Notice 
that one may say that a partial ordering gives a form of total ordering to 
its 'indistinguishability' classes.) One can again interpret R as the collection 
of all possible products of (total) ordering operators between elements of 
the totally ordered set; similarly for R -1. 

The commutator relation for a total ordering states that the loops of 
R R - 1  and R-1 R are generally distinguishable, and hence a definite direction 
may be assigned to their 'tracks' (i.e. paths). 

Since the ordering operators carrying indistinguishability classes into 
each other (for a partial ordering) are total orders, it is clear that the lack 
of definition of a sense of direction to the loops of a partial ordering, must 
arise from the lack of 'assignability' of direction to the ordering operators 
within the indistinguishability classes. 

t This assumption must be made, because no other structure has been introduced 
which could allow any contradiction when tests for R-wise indistinguishability are made. 
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4.6. Hyperbolic Metrics 

Consider Minkowski space M with the following structure owing to 
Zeeman (1964). Let M =  R 4, be four-dimensional Euclidean space, and let 
Q denote the characteristic quadratic form on M given by: 

Q(x) = Xo 2 - x12 - .x'2 2 - x3 2, where X = (X0, XI, X2, X3) E M 

Let < be the partial ordering on M given by x < y if the vector y - x is 
time-like, i.e. Q(y - x) > 0, and oriented towards the future, i.e. x0 < Yo. 
Let G be the group of automorphisms of M given by; 

(1) The Lorentz group (all linear maps leaving Q invariant). 
(2) Translations. 
(3) Dilatations (multiplication by a scalar). 

Every element of G either preserves or reverses the partial ordering <, 
consequently the subset Go c G which preserves < is a subgroup of index 

Xo 

f T  (+) ( X ~ / ~  

C S ~ r  x3) 

~ . .  X ~ (X1, X:, X3) 

Figure 2. 

two in G. These statements maybe made as a result of the following theorem 
owing to Zeeman (1964): 

TH(3): The group of automorphisms of M preserving the partial ordering 
< is the group Go. 1 

Given this structure, let us fit in the notion of ordering operator. Let us 
refer to Fig. 2. I f x  e M, there are three cones through x which are invariant 
under G, namely: 

DF(4): The light cone on x, CL(x) = {y: Q(y - k) ~ 0}. 

DF(5): The time cone on x, Cr(x) = {y: Q(y - x) > 0}. 

DF(6): The space cone on x, CS(x) = {y: Q(y - x) < 0}. 

DF(7): A line through x is called a light ray, a time axis, or a space line 
according as to whether it passes through cL(x), CT(x), or CS(x) 
respectively. 

If  two points are separated by a time axis, e.g. the points A, B in Fig. 2, 
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and A < B, then Q ( B -  A ) >  0. Let us write this as follows in order to 
distinguish a time direction: 

.--> 

A < B is written Q(A; B) > 0 

B > A is written Q(A; B) > 0 

If  Q(x;y)=s2>O, and we also make the interpretation ( x ; y ) = y - x ,  
<__ 

that is the path goes from x towards y, and if similarly Q(x;y) = s 2 > O, 

with ( x ; y ) =  x - y  = - ( y - x )  meaning that the path goes from y to x, 

then we can introduce two operators Q - l : s - + ( x ; y ) = y - x ,  and 

Q-I :s -+ (x;y) = x - y .  They plainly associate numbers s, related to the 
interval of the path, namely s 2 =  Q ( x - y ) =  Q ( y - x ) ,  with two points 
separated by that interval. To make these operators less ambiguous, let us 

consider Q-l(s). Q-l(s) as left operators in the sense of ordering operators 
and relations: 

If ( x ; y ) =  ~ 2 - 1 ( s ) = y - x ,  then write xQ-l(s)y, or equivalently, 

y = ( x )  -=- 
<-- ~ -  <-- 

I f  (x;y)= Q-~(s)=x-y, then write yQ-l(s)x, or equivalently, 
<-- 

x = (y) (Q- '(s))  - yQ-l(s). 

This notation makes quite clear the way in which yQ-a(s)x appears as the 

inverse of the relation xQ-l(s)y, which latter is the relation of x preceding 
y in a time sense with a separation of interval s z: thus all possible points y 
lie on a hyperbolic shell within the forward light cone cT~+)(X). 

Now suppose that Q(a;b) 2 = s,b > O, Q(b; c) = s2c > 0; together these 

imply Q(a;c) - 2 
- s,c > 0. In general, if a series of points of M are all connected 

so that each has its immediate predecessor in its respective backward time 
cone C r(-), then we can always write for example: 

O(a;aQ-l(s12>O) Q-l(s22>o)...O-l(sn2>o))>o (4.6.1) 

That this is so can be verified easily by drawing a diagram illustrating the 
argument of Q, again, a diagram will show that any one arrow over a 

Q-l(s2 > 0) is reversed, then the relation above does not generally hold, 
neither does it generally hold if any of st 2 < 0. One can see that the ordering 

relation/operator Q-l(s2 > 0) is a counterpart of the partial ordering < on 
M, but that it contains the extra structure donated by the parameter s 2 in 

the way already described. Also Q-l(s2 > 0) satisfies the transitivity axiom, 
as equation (4.6.1) clearly demonstrates. 

Let us now show that Q-l(s2 > 0), as an operator associated with an 
ordering relation, a total ordering satisfying our causality condition and 

2 
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that the former fact requires points of M to possess Zeeman's fine ~- 
neighbourhoods. When the possibility of equality is dropped from the 
ordering relation, i.e. we consider Q-l(s2 > 0), the resulting total order 
eliminates the ambiguity, arising from the light cone indistinguish- 
ability classes, by removing the light cones. That is, given a point x, the 

operator Q-~(s z > 0) has range Cr(+)(x), therefore the ordering relation is 
.e-- 

d e f i n e d  in x U cr(+)(x); the operator Q-I(s2 > 0) has range cT(-)(X), and 
therefore the associated ordering relation is defined in x U cr(-)(x).  
Consequently for every point x~ belonging to a strictly time ordered 
sequence1- of points {xi} one needs to associate the cones-with-vertices 
c T(-)(Xi) U x i U cT(+)(XI)= X i U CT(xi) in  order to discuss predecessor and 
successor relationships. However, in order to include a valid discussion of 
products of Q-l(s2> 0) operators with forward and backward arrows 
(which means one must be able to test whether the result of applying such 
a product to a point x gives a point y which is time-wise or space-wise 
separated from x) it is required that there is also associated the space cone 

CS(x) with the point x; i.e. for a full discussion of the use of the Q-l(s2 > 0), 
<-. 

Q - l ( s 2 > 0 )  operators, to every point x in M we must associate 
x U Cr(x)U CS(x). It only remains to make the convention that if a 

4--- 

product I ~  (~-1, Q-I) is applied to a point x, then it gives a point 
_+ + -  

y r x U Cr(x) U CS(x) IFOF y e CL(x); in which case 1--I (Q-l ,  Q-l) may 
be considered as some form of 'null product'.  Making these considerations 
local, we have to associate to a point x a fine e-neighbourhood N~r(x) =- 
N f ( x )  fl (Cr(x) U CS(x)), where N,e(x) is a Euclidean ball of radius 
on the centre x; N,F(x) is just the Euclidean e-ball with its light cone removed 
and its centre replaced, and is Zeeman's fine e-neighbourhood (Zeeman, 
1964). 

.-> 

It is now possible to demonstrate that the ordering operator Q-l(s2 > 0) 
satisfies the total order commutation relation, Section 2.5, PR(3), in its 

4-- 

simple form. Consider the term ~2 -1 Q-l ;  it may be represented by the 

closed loop in Fig. 3. Starting from A the operator Q-l(s2 > 0) translates 
A into the later point B by means of a time-like path. Since the general 
ordering operator can relate any two points time-wise separate, we may 
consider B to vary over the whole of the forward light cone of A. Similarly 

<-- 

the term Q-~ ~2 -1 in the commutator bracket will generate a loop in the 
backward light cone of A. The non-vanishing of the commutator requires, 
therefore that loops in the forward and backward light cones of a point 
cannot be deformed one into the other. The proof  is as follows: 

The forward and backward loops could be deformed one into the other 
if it were possible for them both to be contracted to the point A. Technically 

t" That is to say x~-i < x~ for all adjacent pairs of points. 
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speaking this would mean that loops in the forward and backward cones 
would be homotopic to the same constant map on A; however, in point 
of fact this would introduce difficulties concerning relative orientation 
of the loops besides the question of the structure of the loops. However, 
neither of the loops can be contracted to the constant map on A, and this 
can be shown by considering Fig. 3. As B -+ A the hyper-volume enclosed 

Figure 3. 

by the loop will contract. In particular consider the two arbitrary points 
R, S, along the outgoing and incoming paths AB, BA, when the loop is 
very small. Then the fine neighbourhoods of R and S will define a region 
of inaccessibility for the loop A RBS, which is the shaded region. Moreover, 
the loop ARBS is trapped in the region 

D = [Gr(+)(A) M GT(-)(B)] - [CS~+)(R) N Gs~-)(S)] 

which becomes progressively smaller. Since by hypothesis the operator 

Q-l(sZ > 0) is total and cannot create a light path--i.e, in the fine neigh- 
bourhoods the 'light cones minus vertex' are absent--the loop cannot 
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vanish. The non-vanishing of the loop can also be shown by the following 
contradiction: the intersections E(-+~= CL(+-~(R)(q CL(+-~(S), here labelled 
by the letters U, T, are vacuous in the fine neighbourhood topology used 
here; if B - +  A and B meets A, then A and T coincide and B and U must 
coincide, consequently the points A, B are members of empty sets--a 
condition clearly impossible except in a vacuous sense. As final remarks 
we may mention: (a) it does not matter what orientation is chosen for the 
loop ARBS; (b) this proof is still valid in curvilinear coordinates, for we 
have considered nothing more detailed than regions between light cones. 
We have therefore proved the following most important and satisfying 
theorem: 

TH(4): The hyperbolic metric of Minkowski space generates an ordering 
relation that is causal. ] 

RMK(4): It is as well to notice that this result also acts as an existence 
theorem for metric representations of causal ordering relations/operators 
satisfying the commutator condition [R,R -l] 4: O. 

4.7. Topology Induced by a Causal Ordering 

The construction that has just been introduced, namely Zeeman's fine 
topology, does more than provide a useful example enabling a solution 
of the condition [R,R -1] ~0  to be found. It indicates the fundamental 
nature of any topology induced upon a space by the causal operator which 
acts upon that particular space; this is that a form of 'disconnecting' must 
be introduced into the space: it is disconnecting in the sense that the cut 
prevents access of paths. 

Considering Fig. 3, one can see that the light cones (or rather their 
non-existence) give rise to the non-contractibility of the loop ARBSA. 
The disconnecting cut must pass through the point, because otherwise there 
is a possible situation in which the forward and return paths may be 
deformed one into the other. For example in Fig. 3 if the sections of light 
cone UST and URT were moved so that their vertices were to the left of R 
and right of S respectively, then ARB could be deformed into BSA. 

Since the ordering relation is transitive, the 'discontinuity' associated 
with a point cannot be of such a kind that it separates its predecessors into 
regions inaccessible from the point. Nor must the successors be separated 
into 'disconnected' regions if transitivity is to be preserved by the induced 
topology. Therefore the topology induced by a series of points ordered by 
the relation gives rise to a tube-like region of the space within which the 
path lies. 

Moreover, the 'disconnection' must bear a symmetry (about the point 
it is associated with) that is determined by the ordering group R.t  There 
are two, coupled, reasons for this: (1) successors of the point are accessible 

t This notation is taken from the more formal approach developed in Part III, but one 
can perfectly well think of Ro. 
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within the 'tube' by means of 'transitions' which have the structure of P,; 
(2) the inaccessible region within a loop (see Fig. 3) is governed in shape by 
the deformations of the constituent paths of the loop and these are given 
by R. We can therefore state: 

PR(5): A causal ordering in a space induces a topology of which the 
neighbourhoods of points have the following properties: 

(1) There is a disconnecting cut in the neighbourhood, 
(2) The 'disconnection' meets the base point considered. 
(3) The region within which dynamical transitions may occur is 

(open-ended) tube-like. 
(4) The tube and the 'disconnection' defining the tube have the 

symmetry of the ordering operator group. ] 

RMK(5): Light cones clearly have these properties, for they define the 
'disconnection' in fine neighbourhoods and have funnel shaped 'tubes'. 

RMK(6): It is also clear that if the three-space of the space-time in which 
the causal ordering operator acts is locally metrisable, then the 'metric' 
associated with the ordering operator must be 'at least' quadratic and 
hyperbolic, otherwise there could be no 'light cones' giving rise to the 
open-ended tube. 

5. Conclusions 

There has first been presented an intuitive way of thinking of an ordering 
relation as an operator, more precisely, as a family of operators. Conditions 
have also been found that relations of various degrees of strength must 
satisfy. In particular the commutation relation for the total ordering opera- 
tor has been seen to be of use. Physics has been considered as a study that 
must be subject to the Principle of Corporate Agreement, a principle 
defined here for the purpose of arriving at a metric-free notion of causality. 
This principle will turn out to be of significance in the study of quotient 
structures in Part III of this series. Lastly an existence theorem for the 
commutator condition on a (total) causal ordering has been proved, and 
it shows that spaces which are used for the coordinate-cartographical 
description of causally related events must have 'at least' a hyperbolic 
metric. 

5.1. Further Remarks 
The interpretation of an ordering relation as an operator given here is 

rather inadequate, firstly because it hardly touches any mathematical 
foundation, secondly because it does not relate to observation, the basic 
material of any study of physics. These two defects are treated on a much 
more serious level in Part III. 

Also we have not made any mention of causality in classical non- 
relativistic dynamics, which uses ordinary Euclidean space. An apparent 
contradiction is therefore presented if one believes that causality can be 
fully described by dynamics in Euclidean space as well as in Minkowski 
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space. Here we have implied that Minkowski  space is acceptable but  that  
Euclidean space is not. No full discussion on this matter  can be properly 
entered into unt i l  after all the considerations of Part  I I I  have been presented 
that  relate to fundamenta l  groups. 
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